
How to tune the system parameters to realize stochastic resonance

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 11969

(http://iopscience.iop.org/0305-4470/36/48/005)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/48
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 11969–11980 PII: S0305-4470(03)66020-8

How to tune the system parameters to realize
stochastic resonance

Bohou Xu1, Jianlong Li1 and Jinyang Zheng2

1 Department of Mechanics, State Key Laboratory of Fluid Power Transmission and Control,
Zhejiang University, Hangzhou 310027, People’s Republic of China
2 Institute of Chemical Process Equipment, Zhejiang University, Hangzhou 310027,
People’s Republic of China

E-mail: xubohou@zju.edu.cn

Received 14 July 2003
Published 19 November 2003
Online at stacks.iop.org/JPhysA/36/11969

Abstract
The paper presents a numerical method of realizing stochastic resonance
(SR) by tuning system parameters. Firstly, a simple and effective method
of evaluating the system response speed λ1 is introduced. Then the parameter-
induced SR problem can be reduced to the parameter optimization problem
under the condition λ1 = const. To solve this optimization problem, we
put forward the following techniques: (i) compensate the deviation from the
prescribed system response speed λ1 at each step, (ii) take the curve length
increment on the parameter plane as the step size in searching the maximal
signal-to-noise ratio (SNR) gain. Finally, a numerical simulation confirms the
effectiveness of this method.

PACS number: 05.45.Pq

1. Introduction

Stochastic resonance (SR) was originally reported in 1981 as a mechanism that might explain
why the Earth’s ice ages occur more or less periodically every 100 000 years [1]. Since
its introduction, this phenomenon has been shown in optical systems, biological systems,
chemical systems, etc. We may refer to the very exhaustive review [2]. Furthermore, the study
of SR in signal analysis has received considerable attention in recent years [3–18].

Essentially, SR is based on the cooperative effects between the stochastic-subjected
dynamical system and the external periodic forcing [1]. SR can be realized by tuning the
stochastic-subjected dynamical system or varying the forcing frequency [19, 20]. To tune
the stochastic-subjected dynamical system, besides adding noise, we can tune the intrinsic
characteristic of the dynamical system.
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According to the notion of classical SR, its occurrence needs three ingredients: a double
well potential, periodic forcing and a noise. So the dynamical system can be modelled by the
differential equation

ẋ(t) = ax(t) − µx3(t) + h(t) + ξ(t) a, µ > 0 (1)

where a and µ are system parameters, h(t) is the input periodic signal, and ξ(t) approximates
the exponentially correlated coloured noise with Gaussian distribution and zero mean. Such
noise can be generated by a Gauss–Markov process via the following equation,

τ ξ̇ (t) = −ξ(t) + �(t) (2)

where τ is the noise correlation time, and �(t) is a zero mean Gaussian white noise with
the noise intensity D. This model was introduced in [7], based on a popular work appeared
in [21]. Here, tuning the intrinsic characteristic of the dynamical system means tuning the
system parameters a and µ. In previous papers [14–16], we demonstrated that when the noise
intensity and the forcing frequency were fixed, SR could be realized by tuning the system
parameters. In fact, SR realized by tuning the system parameters first appeared in the research
of SR in Chua’s circuit [17]. It was also shown in [18] that there are optimal values for
the threshold in the detection of noisy signals with neuron-like threshold crossing detectors.
In a review paper [3], the fact that SR can be realized by adjusting system parameters was
emphasized in the signal processing field.

In section 2, we will introduce a method of evaluating the system response speed λ1

because it is very important for tuning system parameters. The inverse of the system response
speed (1/λ1) is the characteristic time of the system, which dominates the time of the system
tending to the steady state. The input signal we considered in this paper is periodic. It was
demonstrated that the ac signal can be viewed as the connections of dc signals with different
levels when the system response speed is high enough [23]. Therefore, for the convenience
of calculation, h(t) in equation (1) is reduced to a constant h in sections 2 and 3. Moreover,
we hope that the system response speed is high enough in order to trace the varying of the
input signal. Section 3 presents the method of tuning system parameters in detail. This
method can be briefly described as follows: (i) assume that the noise correlation time τ , the
noise intensity D and the input signal h are fixed; (ii) according to the highest frequency
of the input signal, select a large enough system response speed; (iii) search the maximal
signal-to-noise ratio (SNR) gain by tuning system parameters a and µ with the fixed system
response speed. In fact, the parameter-induced SR problem can be reduced to the parameter
optimization problem under the condition λ1 = const. To solve this optimization problem, we
put forward two techniques: (i) compensate the deviation from the prescribed system response
speed at each step; (ii) take the curve length increment on the parameter plane as the step
size in searching the maximal SNR gain. In section 4, by a numerical simulation, the notion
of SR is applied in order to denoise a periodic signal, and the simulation results confirm the
effectiveness of the optimization. The conclusions are given in section 5.

2. The solution of the system response speed

Rescale the variables according to

τ̄ = aτ t̄ = at y =
√

a

D
x µ̄ = µD

a2
h̄ = h√

aD
. (3)

Equations (1) and (2) can be rewritten as

ẏ(t̄) = y(t̄) − µ̄y3(t̄) + h̄ + ξ(t̄) (4)
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τ̄ ξ̇ (t̄ ) = −ξ(t̄) + �(t̄). (5)

Obviously, the number of the parameters is decreased and the noise intensity becomes unity.
The system response speed λ̄1 can be evaluated from the following formula [23]

λ̄ = st
F �=0

∫ +∞
−∞ F ′2(y) exp[g(y)] dy∫ +∞

−∞[1 − τ̄ c̄′(y)]F 2(y) exp[g(y)] dy
(6)

where st means the stationary value in variational problems, and

c̄(y) = y − µ̄y3 + h̄ (7)

c̄′(y) = 1 − 3µ̄y2 (8)

g(y) =
∫ y

0
c̄(y) dy − 1

2
τ̄ c̄2(y). (9)

Equation (6) is demonstrated in appendix A in detail.
In the following we solve the variational problem (6) numerically by the Hermite

interpolating method. In the range of y ∈ [yk, yk+1], perform the coordinate transformation

y = yk + 1
2 (yk+1 − yk)(ζ + 1) −1 � ζ � 1. (10)

Then the Hermite interpolating functions of F(ζ ) and F ′(ζ ) with −1 � ζ � 1 are

F(ζ ) =
4∑

i=1

fi(ζ )Fi = [f1 f2 f3 f4]{Fe} (11)

F ′(ζ ) =
4∑

i=1

f ′
i (ζ )Fi = [f ′

1 f ′
2 f ′

3 f ′
4]{Fe} (12)

where

f1(ζ ) = 0.25(2 + ζ )(1 − ζ )2 f ′
1(ζ ) = −0.75(1 − ζ )(1 + ζ )

f2(ζ ) = 0.25(1 + ζ )(1 − ζ )2 f ′
2(ζ ) = −0.25(1 − ζ )(1 + 3ζ )

f3(ζ ) = 0.25(2 − ζ )(1 + ζ )2 f ′
3(ζ ) = 0.75(1 − ζ )(1 + ζ )

f4(ζ ) = −0.25(1 − ζ )(1 + ζ )2 f ′
4(ζ ) = −0.25(1 + ζ )(1 − 3ζ )

{Fe} = [F1 F2 F3 F4]T

in which

F1 = F(yk) F3 = F(yk+1) F2 = F ′(yk) F4 = F ′(yk+1).

From equation (10), dF/dy is given by

dF

dy
= F ′(ζ )

dζ

dy
= 2

yk+1 − yk

F ′(ζ ) = 2

�yk

F ′(ζ ). (13)

With the help of equations (10)–(13), we have∫ yk+1

yk

F 2(y)[1 − τ̄ c̄′(y)] exp[g(y)] dy =
∫ 1

−1
F 2(ζ )[1 − τ̄ c̄′(ζ )]

�yk

2
exp[g(ζ )] dζ

= {Fe}T [Me]{Fe} (14)
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∫ yk+1

yk

F ′2(y) exp[g(y)] dy =
∫ 1

−1

2

�yk

F ′2(ζ ) exp[g(ζ )] dζ

= {Fe}T [Ke]{Fe} (15)

where the element matrices [Me] and [Ke] are

[Me] = [
Me

ij

]
[Ke] = [

Ke
ij

]
i, j = 1, 2, 3, 4 (16)

in which

Me
ij =

∫ 1

−1

�yk

2
[1 − τ̄ c̄′(ζ )]fifj exp[g(ζ )] dζ (17)

Ke
ij =

∫ 1

−1

2

�yk

f ′
i f

′
j exp[g(ζ )] dζ. (18)

By uniting the element matrices as in the usual finite element method, we have∫ +∞

−∞
[1 − τ̄ c̄′(y)]F 2(y) exp[g(y)] dy = {F }T [M̄]{F } (19)

∫ +∞

−∞
F ′2(y) exp[g(y)] dy = {F }T [K̄]{F }. (20)

Because F2, F4 etc are derivatives with respect to ζ , transform them into derivatives with
respect to y, i.e.,

[M] = [Tr]T [M̄][Tr] [K] = [Tr]T [K̄][Tr] (21)

where

[Tr] = diag
[
1 �y0

2 · · · 1 �yn−1

2

]
.

In equation (6) the integral upper limit and lower limit can be estimated by
∫ y0

−∞ exp[0.5g(y)] dy

and
∫ +∞
yn

exp[0.5g(y)] dy, respectively. For example, if the precision defined is 0.001, y0 and
yn are obtained by the following equations,:∫ y0

−∞
exp[0.5g(y)] dy = 0.001

∫ +∞

yn

exp[0.5g(y)] dy = 0.001.

From equations (19)–(21), equation (6) can be rewritten as

([K] − λ̄[M]){F } = 0. (22)

Obviously, the matrices [M] and [K] are both symmetric. From equation (6), [M] is positive
and [K] is semi-positive. The system response speed λ̄1 is the minimum positive eigenvalue
[14]. In our previous method [14], F(y) in equation (6) is a polynomial function, not a
piecewise interpolating function. That will lead to the large difference among the elements
of the matrix [M] or [K] and make the matrices ill-conditioned. Hence, it will bring on
difficulties in evaluating the system response speed. However, the Hermite interpolating
method can avoid this case and obtain a more accurate solution.

3. The method of tuning system parameters

To obtain the maximal SNR gain (i.e., realize SR), it is necessary to optimize the system
parameters. In this section, we will discuss this in detail.
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Figure 1. A sketch of a versus µ̄. a and µ̄ satisfy the prescribed system response speed.

3.1. The description of the problem

The SNR gain is discussed in appendix B. From equations (3), (B.7) and (B.8), SNRout can be
expressed as

SNRout = SNRout(h̄, µ̄, τ̄ ) = SNRout(SNRin, a, µ̄, τ ). (23)

The system response speed λ̄1 evaluated from equation (6) is the inverse of the characteristic
time of the system (4). According to the scale equation (3), the practical system response
speed is

λ1 = aλ̄1(h̄, µ̄, τ̄ ) = aλ̄1(SNRin, a, µ̄, τ ). (24)

As described in section 1, SNRin and τ are prescribed, so equations (23) and (24) are rewritten
as

SNRout = SNRout(a, µ̄) (25)

and

λ1 = aλ̄1(a, µ̄). (26)

The system response speed λ1 should be determined by the highest frequency of the input
signal. Note that it should be high enough in order to trace the varying input signal. However,
too high speeds cannot be chosen, otherwise the stochastic deviation of the output will increase.
In fact, by our recent research, there is an optimal system response speed, which is related
to the frequencies and the amplitude of the input signal and the noise intensity. It will be
discussed in detail in subsequent papers. Here, we take the system response speed 4–8 times
the highest frequency of the input signal. Under the condition λ1 = const, tune the parameters
a and µ̄ until a maximal SNR gain is obtained, i.e., realize SR by tuning the parameters a
and µ̄. According to equation (B.9), the SNR gain is maximal with the maximal output SNR.
Therefore, the parameter optimization problem can be expressed as

max
a,µ̄

τ,SNRin,λ1=const

SNRout(a, µ̄) = SNRmax
out (τ, SNRin, λ1). (27)

Figure 1 is a sketch of a versus µ̄ when they satisfy the prescribed system response speed λ1.
The optimal a and µ̄ should be searched along the solid curve.

In the following, we explore the equation satisfied by δa and δµ̄ under the condition
λ1 = const.

From equation (26), the condition λ1 = const can be rewritten as

δλ1 = λ̄1δa + aδλ̄1 = 0. (28)
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To obtain the expression for δλ̄1, first deal with the following variation,

δ

∫ +∞
−∞ F ′2(y) exp[g(y)] dy∫ +∞

−∞[1 − τ̄ c̄′(y)]F 2(y) exp[g(y)] dy
= δL = A

B
− L · C

B
(29)

where

A =
∫ +∞

−∞
δg(y)F ′2(y) exp[g(y)] dy (30)

B =
∫ +∞

−∞
[1 − τ̄ c̄′(y)]F 2(y) exp[g(y)] dy (31)

C =
∫ +∞

−∞
{[1 − τ̄ c̄′(y)]δg(y) − τ c̄′(y)δa − τ̄ δc̄′(y)}F 2(y) exp[g(y)] dy (32)

L =
∫ +∞

−∞
F ′2(y) exp[g(y)] dy/B. (33)

Equations (7)–(9) give

δc̄(y) = −y3δµ̄ − h̄

2a
δa (34)

δc̄′(y) = −3y2δµ̄ (35)

δg(y) = gµ̄(y)δµ̄ + ga(y)δa (36)

where

gµ̄(y) = −1

4
y4 + τ̄ c̄(y)y3 (37)

ga(y) = h̄

2a
[τ̄ c̄(y) − y] − 1

2
τ c̄2(y). (38)

Substituting equations (35) and (36) into equation (29) yields

δL = G

B
− L · H

B
(39)

where

G =
∫ +∞

−∞
[Wµ̄1(y)δµ̄ + Wa1(y)δa] dy (40)

H =
∫ +∞

−∞
[Wµ̄2(y)δµ̄ + Wa2(y)δa] dy (41)

in which

Wµ̄1(y) = gµ̄(y)F ′2(y) exp[g(y)] (42)

Wa1(y) = ga(y)F ′2(y) exp[g(y)] (43)

Wµ̄2(y) = {[1 − τ̄ c̄′(y)]gµ̄(y) + 3τ̄ y2}F 2(y) exp[g(y)] (44)

Wa2(y) = {[1 − τ̄ c̄′(y)]ga(y) − τ c̄′(y)}F 2(y) exp[g(y)]. (45)
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For the eigenvalue λ̄1, assume that the corresponding eigenvector is {v} = [v1, v2, . . . , vn]T .
Then with the help of equation (39), the variation of λ̄1 is

δλ̄1 = λ̄µ̄1δµ̄ + λ̄a1δa − λ̄1(λ̄µ̄2δµ̄ + λ̄a2δa) (46)

where

λ̄1 = {v}T [K]{v}
{v}T [M]{v} λ̄µ̄1 = {v}T [Kµ̄1]{v}

{v}T [M]{v} λ̄a1 = {v}T [Ka1]{v}
{v}T [M]{v}

λµ̄2 = {v}T [Kµ̄2]{v}
{v}T [M]{v} λ̄a2 = {v}T [Ka2]{v}

{v}T [M]{v}
in which [Kµ̄1], [Ka1], [Kµ̄2] and [Ka2] are the interpolating matrices of

∫ +∞
−∞ Wµ̄1 dy,∫ +∞

−∞ Wa1 dy,
∫ +∞
−∞ Wµ̄2 dy and

∫ +∞
−∞ Wa2 dy, respectively. These matrices are obtained by the

Hermite interpolating method introduced in section 2. Putting equation (46) into equation (28)
yields

λ̄1δa + aλ̄µ̄1δµ̄ + aλ̄a1δa − aλ̄1(λ̄µ̄2δµ̄ + λ̄a2δa) = 0. (47)

In the following, we will optimize the system with equations (26) and (47).

3.2. The approach of tuning the system parameters

Generally, we will meet two problems when optimizing the output SNR with λ1 = const
as described above. The first problem is that the evaluated system response will deviate
from the prescribed one with increasing iterative number. As shown in figure 1, the curve
near the points like A has large slope. Therefore, the second problem is that if �a is chosen as
the step size in the search, �µ̄ cannot be precisely obtained near these points. In this case, there
will be a large deviation of the evaluated system response speed from the prescribed one. For
the first problem, we take a step by step compensation method to avoid the deviation. For the
second one, the curve length increment �s is taken as the step size in the search (see figure 1)
instead of �a, which can avoid the error near the points with large slopes. In the following,
the two methods will be discussed in detail.

First of all, choose proper initial values a0 and µ̄0. Then evaluate the corresponding
system response speed λ10 by equations (6) and (26). So the deviation from the prescribed λ1

is

ε0 = λ1 − λ10 = λ1 − a0λ̄1(a0, µ̄0). (48)

To compensate the deviation ε0, equation (47) is rewritten as

(λ̄10 + a0λ̄a10 − a0λ̄10λ̄a20)�a + a0(λ̄µ̄10 − λ̄10λ̄µ̄20)�µ̄ = ε0. (49)

From equation (47), the step size �a0 is

�a0 = �s cos β

= a0(λ̄10λ̄µ̄20 − λ̄µ̄10)�s√
(λ̄10 + a0λ̄a10 − a0λ̄10λ̄a20)2 + a2

0(λ̄10λ̄µ̄20 − λ̄µ̄10)2
(50)

where β is shown in figure 1. �µ̄ is given by equation (49), i.e.,

�µ̄0 = (λ̄10 + a0λ̄a10 − a0λ̄10λ̄a20)�a0 − ε0

a0(λ̄10λ̄µ̄20 − λ̄µ̄10)
. (51)

Take

a1 = a0 + �a0 µ̄1 = µ̄0 + �µ̄0 (52)
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Figure 2. (a) The input signal spoiled by the coloured noise and (b) the input signal h(t) and the
recovery signals (a—the input signal; b—the recovery signal with the optimal parameters; c—the
recovery signal with a = 10 and µ = 1000).

as the parameters in the next step. When the computation is in the ith step, equations (48) and
(50)–(52) could be rewritten by substituting i for the subscript 0 in these equations, i.e.,

εi = λ1 − λ1i = λ1 − aiλ̄1(ai, µ̄i) (53)

�ai = ai(λ̄1i λ̄µ̄2i − λ̄µ̄1i )�s√
(λ̄1i + aiλ̄a1i − aiλ̄1i λ̄a2i )2 + a2

i (λ̄1i λ̄µ̄2i − λ̄µ̄1i )2
(54)

�µ̄i = (λ̄1i + aiλ̄a1i − aiλ̄1i λ̄a2i )�ai − εi

ai(λ̄1i λ̄µ̄2i − λ̄µ̄1i )
(55)

ai+1 = ai + �ai µ̄i+1 = µ̄i + �µ̄i (56)

which can be used to search for the maximal SNRout along the curve λ1 = const. �s can be
adjusted if it is needed. The initial values a0 and µ̄0 can also be changed in different regions
(e.g. [0.01 0.1], [0.1 1], etc) in order to search for the maximal SNRout in the corresponding
region if there are several limit values. After the optimal a and µ̄ are obtained, the optimal µ

may be evaluated from equation (3).

4. The application of the method

In this section, we will simulate the nonlinear system with the optimized parameters by
simulation software MATLAB R©.

Consider an input signal h(t) = sin(0.1πt) + 0.6 sin(0.4πt) spoiled by Lorentzian
coloured noise with the correlation time τ = 0.01 and the intensity D = 0.06 (see figure 2(a)).
Obviously, the signal period is 20 s.

The numerical simulation model is illustrated in figure 3. h(t) is the input signal and �(t)

denotes the input white noise. The dashed-frame A simulates Lorentzian coloured noise (i.e.,
equation (2)), and B represents the nonlinear system (i.e., equation (1)), which was described
in detail in [2].

In terms of the highest frequency of the input signal being 0.2 Hz, we take the system
response speed λ1 as 1.2 Hz. For the above analogue signal, the constant h in equation (1)
should be determined before the system parameters are optimized. According to the method
discussed in [23], h is approximately taken as 0.29. The optimal system parameter values for
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Figure 3. Functional block scheme for simulating the bistable system.

this magnitude and the mean SNR gain MSNR gain [23] with the prescribed response speed could
be evaluated by the method discussed in section 3. Their values are a ≈ 0.35, µ ≈ 10.21 and
MSNR gain ≈ 1.35, respectively. The output sampling points can be recovered by the recovery
formula, which is discussed in appendix C. Then join the recovery points by the method of
Hermite curve fit [24] (see figure 2(b)). To show the effectiveness of optimization, choose
a = 10 and µ = 1000 at random and evaluate the corresponding MSNR gain ≈ 0.25, which is
much less than that with the above optimal parameter values. Figure 2(b) confirms the result.
It shows that the recovery signal with the optimal parameter values is closer to the input signal.

5. Conclusions

In this paper, a simple but efficient method of evaluating the system response speed is
introduced. Then we mainly discuss SR realized by adjusting the system parameters and
put forward the method of tuning the parameters in detail. In fact, the maximal SNR gain
can be obtained by solving an optimization problem with a prescribed system response speed.
The numerical simulation confirms the effectiveness of the method. Finally, it is necessary to
emphasize that the method is valid on the condition that the input signals are single-frequency
signals or multi-frequency signals and the noise is white noise or Lorentzian coloured noise
with short correlation time.
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Appendix A. The derivation of the system response speed

By analysis of an expansion in powers for the noise-correction time τ , a one-dimensional
approximation of the Fokker–Planck equation is [21]

∂ρ(x, t)

∂t
= − ∂

∂x
[c(x)ρ(x, t)] + D

∂2

∂x2

[
ρ(x, t)

1 − τc′(x)

]
(A.1)

where ρ(x, t) is the probability density, c(x) = ax − µx3 + h and c′(x) is its derivative. The
approximation is based on considering τ and D as small parameters (i.e., τ � 1 and D � 1)
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because the higher order terms of τ or D are neglected. Rescale the variables according to
equation (3), and then equation (A.1) is recast as

∂ρ(y, t̄)

∂ t̄
= − ∂

∂y
[c̄(y)ρ(y, t̄)] +

∂2

∂y2

[
ρ(y, t̄)

1 − τ̄ c̄′(y)

]
(A.2)

where c̄(y) and c̄′(y) are given in equations (7) and (8). The steady-state solution of
equation (A.2) is given by [22]

ρ(y) = N |1 − τ̄ c̄′(y)| exp[g(y)] (A.3)

where g(y) is given in equation (9) and the constant N is determined by the normalization
condition of the probability density ρ(x),

N =
[√

D

a

∫ +∞

−∞
|1 − τ̄ c̄′(y)| exp[g(y)] dy

]−1

. (A.4)

Under the condition 1 − τ̄ c̄′(y) > 0, an approximate solution of equation (A.2) may be
assumed as

ρ(y, t̄) = (y, t̄)[1 − τ̄ c̄′(y)] exp
[

1
2g(y)

]
. (A.5)

Putting equation (A.5) into equation (A.2) yields

∂(y, t̄)

∂ t̄
[1 − τ̄ c̄′(y)] = ∂2(y, t̄)

∂y2
− V (y)(y, t̄) (A.6)

where

V (y) = 1
2g′′(y) + 1

4g′2(y). (A.7)

Obviously, the right-hand side of equation (A.6) can be considered as a self-conjugate
differential operator acting on (y, t̄). Define (y, t̄) as

(y, t̄) = u(y) exp[−λ̄t̄]. (A.8)

Substituting (y, t̄) into equation (A.6) yields

−λ̄u(y)[1 − τ̄ c̄′(y)] = u′′(y) − V (y)u(y). (A.9)

Multiplying both sides of equation (A.9) by u(y) and integrating it from minus infinity
to infinity with respect to boundary conditions limy→±∞ u(y) = limy→±∞u′(y) = 0,
equation (A.9) can be transformed into a Rayleigh quotient form, i.e.,

λ̄ = st
u �=0

∫ +∞
−∞[V (y)u2(y) + u′2(y)] dy∫ +∞

−∞[1 − τ̄ c̄′(y)]u2(y) dy
. (A.10)

Assume

u(y) = F(y) exp
[

1
2g(y)

]
(A.11)

so the integrated function is

V (y)u2(y) + u′2(y) = {[
1
2g′′(y) + 1

4g′2(y)
]
F 2(y) +

[
F ′(y) + 1

2F(y)g′(y)
]2}

exp[g(y)]

= {
1
2

[
g′(y)F 2(y)

]′
+ 1

2g′2(y)F 2(y) + F ′2(y)
}

exp[g(y)]. (A.12)

Since∫ +∞

−∞
[g′(y)F 2(y)]′ exp[g(y)] dy

= g′(y)F 2(y) exp[g(y)]|+∞
−∞ −

∫ +∞

−∞
g′2(y)F 2(y) exp[g(y)] dy

= −
∫ +∞

−∞
g′2(y)F 2(y) exp[g(y)] dy (A.13)
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then ∫ +∞

−∞
[V (y)u2(y) + u′2(y)] dy =

∫ +∞

−∞
F ′2(y) exp[g(y)] dy. (A.14)

Therefore, equation (A.10) is changed as equation (6).

Appendix B. The definition of the SNR gain

In this appendix, define the integrals

fi(µ̄, h̄, τ̄ ) =
∫ +∞

−∞
yi |1 − τ̄ c̄′(y)| exp[g(y)] dy i = 1, 2. (B.1)

Then equation (A.4) is changed as

N =
[√

D

a
f0(µ̄, h̄, τ̄ )

]−1

. (B.2)

The asymptotic output SNR is [23]

SNRout = lim
t→∞

E2[x(t)]

D[x(t)]
(B.3)

where E[·] and D[·] are the statistical average and variance of the stochastic variable,
respectively. From equations (3), (A.3) and (B.2), we have

E[x] =
∫ +∞

−∞
xρ(x) dx = N

∫ +∞

−∞
x|1 − τ̄ c̄′(y)| exp[g(y)] dx

= N
D

a

∫ +∞

−∞
y|1 − τ̄ c̄′(y)| exp[g(y)] dy =

√
D

a

f1(µ̄, h̄, τ̄ )

f0(µ̄, h̄, τ̄ )
(B.4)

and

E[x2] = N

∫ +∞

−∞
x2|1 − τ̄ c̄′(y)| exp[g(y)] dx

= N

√
D3

a3

∫ +∞

−∞
y2|1 − τ̄ c̄′(y)| exp[g(y)] dy = Df2(µ̄, h̄, τ̄ )

af0(µ̄, h̄, τ̄
. (B.5)

With the help of equations (B.4) and (B.5), the variance is

D[x] = E[x2] − (E[x])2 = Df2(µ̄, h̄, τ̄ )

af0(µ̄, h̄, τ̄ )
− Df 2

1 (µ̄, h̄, τ̄ )

af 2
0 (µ̄, h̄, τ̄ )

. (B.6)

Then from equations (B.4) and (B.6), the output SNR is

SNRout = f 2
1 (µ̄, h̄, τ̄ )

f0(µ̄, h̄, τ̄ )f2(µ̄, h̄, τ̄ ) − f 2
1 (µ̄, h̄, τ̄ )

= SNRout(µ̄, h̄, τ̄ ). (B.7)

Define the input SNR as

SNRin = h2/D = ah̄
2 (B.8)

so the SNR gain is given by

SNRgain = SNRout(µ̄, h̄, τ̄ )D/h2. (B.9)
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Appendix C. The derivation of the recovery formula [24]

Consider the system

ẋ(t) = f (x) + h(t) + ξ(t) (C.1)

where

f (x) = ax(t) − µx3(t). (C.2)

If |ẋ| � |h|, there will be

h(t) ≈ −f (x) − ξ(t). (C.3)

Take the mean value for this equation and note that E[ξ(t)] = 0, then

h̃ = E[−f (x)] ≈ −f (x̃). (C.4)

Here, h̃ = E and x̃ = E[x]. With this result, the condition |ẋ| � |h| becomes

|h′(t)| � |f ′(x̃)h(t)|. (C.5)

Obviously, when h(t) is close to zero, the condition (C.5) is not satisfied and the output cannot
be recovered by equation (C.4).
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